
Three-Dimensional Magnetic Mapping using

Electromagnetically Induced Transparency and the Effects of

Retro-reflected Light on EIT

Jacob A. Fry

Advisor: Irina Novikova

The College of William and Mary

Senior Thesis

April, 13 2012

Abstract

The objective of this project is to create an optical vector magnetometer.

When completed, this device will use the EIT resonances of Rubidium vapor

to create a three dimensional vector map of an unknown magnetic field. In

this paper, we report on two important capabilities of such a device. First,

we demonstrate its potential for magnetic field detection of non-transparent

targets by retro-reflecting the probe laser back through our target cell. We

observe that the electromagnetically induced transparency signals (EIT)

change neither frequency nor shape when retro-reflected. Second, we report

the direct measurement of both magnitude and direction of an applied mag-

netic field is possible. We accomplish this by measuring the magnetic field
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along two perpendicular directions. Each measurement direction yields a

plane that contains ~B, and we show that ~B is the intersection of the two

planes.

1 Introduction

1.1 Magnetometer Based Upon EIT

The purpose of this project is to create a high precision, optical magnetometer of

small size and expense. We base our magnetometer on an effect observed in atoms

called electromagnetically induced transparency (EIT) in which the transmission of

a resonant bichromatic laser radiation peaks. This peak occurs when the differential

frequency of the laser’s frequency components matches the energy splitting of var-

ious magnetic sublevels of the ground states. These EIT transmission peaks have

relatively high amplitude, a narrow frequency range, and their amplitude changes de-

pending upon the strength and direction of an applied magnetic field. Each of these

characteristics makes EIT an ideal basis for an optical magnetometer [1, 2] which we

be demonstrate in later sections of the report. When completed, it should be capable

of three dimensional magnetic field mapping down to the picotesla or even femtotesla

range. Our current apparatus has the ability to distinguish changes in energy level

shifts of .1Hz, which corresponds to 10pT [3], and can be further improved.

Applications for a device of comparable sensitivity span a wide range of different

fields and uses, most notably the use of magnetic imaging for diagnostic medicine, in

which, an EIT magnetometer would be able to measure the magnetic field generated

by nerve impulses while being relatively nonintrusive. For example, such a magne-
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tometer would be a much more compact and less expensive alternative to SQUID-

based medical magnetometers [4].

1.2 Types of Magnetometers and Their Applications

Magnetometers are used in a wide range of applications including medical imaging,

navigation, materials research, computer engineering, and military surveillance. For

each of these applications, choosing the correct type of magnetometer is vital to the

success of a project. Most devices can be divided into two main groups: vector magne-

tometers and scalar magnetometers. Scalar magnetometers discern the strength of an

unknown magnetic field while vector magnetometers can assess both the magnitude

and direction [5]. Most of the magnetometers used today are scalar magnetometers

since they tend to be cheaper and easier to manufacture. For precise measurements

however, vector magnetometers are generally preferred.

We also need to clarify the definition of a vector magnetometer. The majority of

currently available vector sensors are able to measure only a single component of the

magnetic field. Thus, a three dimensional vector magnetometer requires three or-

thogonal sensors to determine the direction of the field. True vector magnetometers

that require only one sensor to fully characterize the direction are rare or possibly

nonexistent for high sensitivity magnetometers, so they do not receive a special clas-

sification. Therefore, the vector magnetometers we discuss in this section are unable

to fully map the direction of the magnetic field with a single sensor like our EIT

magnetometer.

We now compare high sensitivity vector magnetometers which are commercially

available with the expected aptitude of an EIT-based magnetometer. By completing
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brief evaluations of popular models, we can determine if a niche exists for an EIT

magnetometer in magnetometry.

In Figure 1, we compare the sensitivity of several common vector magnetometers.

Our current magnetometer based upon EIT is several orders of magnitude less sensi-

tive than the most precise magnetometers, but field resolution is often not the most

important consideration when selecting a magnetometer.

Figure 1: A Comparison of Common High Sensitivity Vector Magnetometers [5,3]

The most sensitive type of vector magnetometers use superconductivity. The two

most common types are the superconducting quantum interference device (SQUID)

and the Meissner Effect magnetometer.

The SQUID magnetometer is the most precise vector magnetometer currently

available. SQUID magnetometers have already been modified for use in biomagnetic

applications such as neuron research and medical imaging [4], and they are present

in many of the most advanced medical and scientific research. Their extraordinary

precision comes from the SQUID’s unique method of field measurement. Specifically,

it measures periodic current variations in a superconducting ring. The magnetic flux

through the superconducting ring generates these fluctuations, so by measuring the

output current, the applied field can be deduced. After a demanding modification,
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the SQUID magnetometer can create complete vector maps of the field; however, only

one vector component is measured in the majority of applications.

The most unique aspect of the SQUID magnetometer is its ability to measure

the magnetic field gradient in multiple directions. This feature has been realized

by a group at Tampere University of Technology [6]. In addition, a group at Tokyo

Denki University has developed a SQUID magnetometer that can measure the second

derivative of the field in each direction. Unfortunately, the SQUID magnetometer

has a major limitation: It requires temperatures in the superconducting regime to

function. This requirement makes the magnetometer bulky despite the small size

of the sensor probes. Newer models have raised the required temperature to 77K,

which reduces the required size of the device [8]. But, these higher temperature

models have lower sensitivity, which limits their utility. Specifically, the SQUID

magnetometer functioning at 77K has a sensitivity of 2.8 × 10−13T which is over an

order of magnitude decrease in the sensitivity than when using lower temperatures.

The Meissner Effect magnetometer, like the SQUID magnetometer, needs super-

conduction to function properly. These magnetometers also measure induced currents

in a superconductor [5]. When a superconducter is exposed to a magnetic field, sur-

face currents arise on the surface of the superconductor. These currents cancel the

magnetic field inside the superconductor, and the required current for cancellation

depends on the magnetic field. This is the Meissner Effect used, and by measuring

the current, the magnetic field can be ascertained. Their drawback, like the SQUID

magnetometer, is their large size necessary to lower the temperature for supercon-

ductivity.
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Vector magnetometers based upon induction are some of the most commonly used

magnetometers because of their design simplicity and fairly low expense. The Search

Coil magnetometer and the Fluxgate magnetometer are two of the most popular

induction magnetometers, so we discuss them in detail below.

The Search Coil magnetometer is based on Faraday’s Law of induction. The

sensitivity of these devices is a function of the number of coils, so they can measure

a wide range of magnetic field strengths. However, there exists a wide variation in

frequency response [5]. A serious drawback is that Search Coil Magnetometers are

not sensitive to DC magnetic fields.

The Fluxgate magnetometer is currently one of the most commonly used magne-

tometers both in research and industry. The Fluxgate magnetometer is also based on

induction, but, in this device, the characteristic of ferromagnetic saturation at high

fields is used as well. The downfall for this magnetometer is that the power required

to operate this magnetometer is much higher than for the other induction-based non-

superconducting magnetometers [5].

We consider one optically-based magnetometer other than our EIT magnetometer,

the Magneto-optical sensor. This magnetometer is based upon the rotation of light

passing through a magnetic material. The main benefit of this magnetometer is that it

has an exceptionally fast response time which is normally in the GHz range [5]. It, like

the EIT magnetometer, can be much smaller than many of the other magnetometers

due to the increasingly minute size of optical elements.

Magnetometers are also commonly based upon characteristics of special materi-

als. We consider two magnetometers that fall within this category: the Fiber-optic
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magnetometer and the Giant magnetoresistance magnetometer (GMR).

The Fiber-optic magnetometer uses magnetorestrictive materials as its basis. These

materials contract when a magnetic field passes through them. The change in length

can be found using a probe laser sent through the fiber optics cable and can be used

to calculate the strength of the applied field [5]. The cost for this design is relatively

inexpensive, but the fiber optics cable would need to be quite long for high sensitivity.

A unique benefit to this device is that the curvature of the magnetic field lines can

easily be found by bending the cables.

The GMR magnetometer is another common magnetometers, since it is frequently

used as a memory reader for computers [5]. It is based upon the variation in electron

scattering rate in a system of two layers of ferromagnetic material, a conductor, and

a non-ferromagnetic material.

From this comparison of popular vector magnetometers, we can assess the capa-

bilities of an EIT magnetometer. Our magnetometer would be able to create three

dimensional maps of an applied field more easily, for no extra magnetic field sen-

sitive components are necessary. Since the current device can measure in the pi-

cotesla to femtotesla range, it would be capable of neural imaging like the SQUID

magnetometer, but unlike the currently available medical imaging SQUIDs, all three

vector components can be found in one device. The size of this magnetometer will

be significantly smaller than any of the superconducting magnetometers due to the

size of optical elements. Lastly, the expense would be much lower than for the su-

perconducting magnetometers counterparts. In most applications, sensitivity in the

femtotesla range is not necessary, so the benefits of the EIT magnetometer’s small
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size, vector-mapping ability, and low expense will greatly outweigh the advantages of

superconducting magnetometers.

2 Theory

2.1 Overview

The characteristics of Electromagnetically Induced Transparency within a magnetic

field will be briefly discussed in the following section. We begin by considering a

simple Λ-configuration [8] to observe EIT. Figure 2 shows relevant energy levels for two

ground states with an energy difference due to hyperfine splitting and their common

excited state. If two coherent light fields with frequencies matching the two atomic

transitions shown are sent in, we pump the target atoms into a dark state. This dark

state is a coherent, superposition of the two atomic ground states |g1〉 and |g2〉 [11].

This dark state is non-interacting with the laser fields, so any light passing through

the sample atoms is completely transmitted, making them appear transparent.

Figure 2: Simple Λ System

We can ascertain why the EIT exists in only a narrow range of frequencies by

considering Figure 2 again. If we keep the coherent field E1 fixed while we vary the

frequency of E2 about the expected resonance frequency, the system is completely non-
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interacting only when the frequency is very close to the atomic transition frequency

|g1〉−|g2〉. If this frequency is sufficiently far from resonance, the dark state has a much

smaller probability [1], and there will be mainly absorption of the incident light beam

instead of the transmission expected from EIT. To create an optical magnetometer, we

need to know how the EIT peaks change due to an applied magnetic field. When an

atom is exposed to an external magnetic field, Zeeman splitting breaks the degeneracy

in the magnetic quantum states [9], and this splitting is linear with magnetic field

strength to a first order approximation [10]. By scanning one of the probe fields, we

can find the perturbed frequency separation caused by Zeeman splitting. If both of

our laser fields are such that we achieve EIT on the perturbed energy spectrum, we

only need to measure the frequency range and amplitude of our EIT signal. With this

data, we can deduce the applied magnetic field. Our magnetometer uses a Rubidium

vapor as its target, and there are seven different resonances in Rubidium when tuned

to the D1 transition as shown in Figure 3.

Figure 3: Rubidium 87 Atomic Transitions

Each Λ-system gives a separate transmission peak as shown in Figure 4. The

labels a−3, a−2, ..., a3 are used for convenience when comparing the amplitude and
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frequency spacing between transmission peaks.More specifically, the spectral position

of the m-th EIT peak is shifted by δm = mµB · B away from the central peak which

is magnetoinsensitive.

Figure 4: Seven Transmission Peaks for Rubidium 87

The direction of the magnetic field is measured using transition selection rules

that determine when a transition is allowed. To find which set of rules to follow, the

polarization of the laser fields is compared with the direction of the magnetic field.

2.2 Derivation of the EIT Dark State

At this point, we delve more deeply into the mechanics briefly mentioned in the pre-

vious section. First, we derive the dark state and the corresponding bright state.

Second, we find the exact conditions required for EIT and how these alter the me-

chanics of the three level system.

We start by representing the requirements for the Λ-system using the dressed atom

Hamiltonian. Figure 5 below is a modified version of Figure 2 including each of the

important variables we will consider. This new figure also allows for the condition

that the two fields are not on resonance. At this point, no requirements are imposed
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on the interaction fields.

Figure 5: Λ System in Dressed Atom Basis. Detuning = δ and Rabi frequency = Ω

Our dressed atom Hamiltonian is H = Hatom +Hphotons,1 +Hphotons,2 +Hinteraction.

Each of these contributing matrices is written in the basis

{|1〉, |2〉, |3〉} = {|g1〉a|N+1〉γ,ωl,1
|M〉γ,ωl,2

, |g2〉a|N〉γ,ωl,1
|M+1〉γ,ωl,2

, |e〉a|N〉γ,ωl,1
|M〉γ,ωl,2

}

where N and M are the number of photons dressing the states from the two differ-

ent laser fields, and γ indicates a photon number state. The index ωl specifies the

frequency associated with the photons and the laser field the photons belong to. We

define the bare states as before to be |g1〉 for the lower energy ground state, |g2〉

for the higher energy ground state, and |e〉 for the excited state. Each contributing

matrix for this system is listed below.

Hatom =


E1 0 0

0 E2 0

0 0 E3

 = h̄


ω1 0 0

0 ω2 0

0 0 ω3



Hphotons,1 = h̄ωl,1


N + 1 0 0

0 N 0

0 0 N


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Hphotons,2 = h̄ωl,2


M + 1 0 0

0 M 0

0 0 M



Hinteraction = h̄


0 0 Ω1

2

0 0 Ω2

2

Ω∗1
2

Ω∗2
2

0


The interaction Hamiltonian shown ensures that the interaction terms couple the

correct states. For example, it forbids the |1〉 ↔ |2〉 transition that is unobserved

physically. In addition, the interaction terms are h̄Ω
2

to make sure that the system

undergoes Rabi Flopping with the correct frequency Ω1 due to the first laser field and

Ω2 from the second laser field. Adding together all of the above matrices gives us the

full dressed atom Hamiltonian below.

H = h̄


ω1 + ωl,1(N + 1) + ωl,2(M) 0 Ω1

2

0 ω2 + ωl,2(M + 1) + ωl,1(N) Ω2

2

Ω∗1
2

Ω∗2
2

ω3 + ωl,1(N) + ωl,2(M)


At this point, we introduce the concept of detuning. Detuning is the frequency

difference between an applied laser field and the corresponding atomic transition.

For our two laser fields,

δ1 = ωeg,1 − ωl,1

δ2 = ωeg,2 − ωl,2

where ωeg,1 = ω3 − ω1 and ωeg,2 = ω3 − ω2. In this notation, δ corresponds to the

detuning of a given field, and ωeg is the frequency difference between a given ground

state and its excited state. Using these new definitions, the dressed atom Hamiltonian
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can be simplified. We set E1 = 0 and subtract ωl,1(N) + ωl,2(M) from the diagonal.

Both of these operations only shift the background energy level, but only the energy

difference between states concerns us here. Next, we set ωhf as the hyperfine splitting

frequency between |1〉 and |2〉. This gives us the equivalent Hamiltonian shown below.

H = h̄


ωl,1 0 Ω1

2

0 ωhf + ωl,2
Ω2

2

Ω∗1
2

Ω∗2
2

ωeg,1


Now, we use the rotating wave approximation to subtract ωl,1 from the diagonal to

get our final dressed atom Hamiltonian.

H = h̄


0 0 Ω1

2

0 δ1 − δ2
Ω2

2

Ω∗1
2

Ω∗2
2

δ1


We consider the case where δ1 = δ2 or where the two-photon detuning is zero. The

two-photon detuning is defined as the frequency difference between the detuning of

two fields or ∆ = δ1−δ2. We do not yet assume that our laser fields are on resonance.

The resulting Hamilitonian is shown below.

H = h̄


0 0 Ω1

2

0 0 Ω2

2

Ω∗1
2

Ω∗2
2

δ1


The eigenvalues of this matrix are found by solving the equation det[H − λI] = 0

where I is the identity matrix and [H − λI] is a degenerate matrix. This yields

the polynomial 0 = −λ(λ2 − δ1λ + |Ω1|2
4
− |Ω2|2

4
).The eigenvalues are found to be

λ0 = 0, λ± =
δ1±
√
δ21+|Ω2|2−|Ω1|2

2
. The possible states are calculated using the equation

[H−λI]~v = 0. In order to examine special cases easily, we can write the new eigenbasis
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in terms of the angles θ and φ where tan θ = Ω1

Ω2
and tan 2φ =

√
|Ω1|2+|Ω2|2

δ1
[1]. The

new eigenvectors in terms of the old eigenbasis are

|a+〉 = sin θ sinφ|1〉+ cosφ|3〉+ cos θ sinφ|2〉

|a0〉 = cos θ|1〉 − sin θ|2〉

|a−〉 = sin θ cosφ|1〉 − sinφ|3〉+ cos θ cosφ|2〉

. We notice |a0〉 has no |3〉 component; therefore, atoms in this state have no proba-

bility to be excited. The consequence is that this state is effectively decoupled from

the applied laser fields, so |a0〉 is called a dark state. Thus, the only requirement for

the existance of a dark state in the three-state system is zero two-photon detuning,

and we do not need to be on resonance to pump our atoms into a dark state. However,

when we are on resonance with both of our laser fields, the atom falls into the dark

state much more rapidly [1]. When on resonance, more atoms are excited,thereby

increasing the number of opportunities to spontaneously decay into the dark state.

We now consider the case where we are on resonance (δ1 = δ2 = 0). We add in one

more condition that Ω1 << Ω2 . These two are the standard conditions for attaining

EIT [15]. Ω1 is the Rabi frequency of what is normally refered to as the probe field,

and Ω2 corresponds to what is called the coupling field. Under these conditions, we

discover tan θ → 0 so sin θ → 0 and cos θ → 1. This makes |a0〉 = |1〉 causing the |1〉

state to be the same as the dark state. This greatly increases the probability of the

atom being pumped into the dark state, so our earlier claim is justified. The other

two states in the eigenbasis would be:

|a+〉 =
1√
2
|3〉+

1√
2
|2〉
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|a−〉 = − 1√
2
|3〉+

1√
2
|2〉

because on resonance tan 2φ → 1. We notice that the state |2〉 interacts with the

laser fields, so we call this state the bright state. With this information, we have

shown that our three-level atom interacting with two coherent fields matching the

desired transition frequencies will pump the atom into a dark state, and EIT will be

observed.

In order to use EIT, we must understand how the system evolves in time. The

main pathway the atom takes is spontaneous emission, an inherently a non-coherent

process. This incoherence is due to the universe measuring the photons, collapsing

their wave functions. We can use density matrix formalism to handle this incoherence.

The form of the density matrix is ρ = |Ψ〉〈Ψ| =
∑
Pi|Ψi〉〈Ψi| where |Ψi〉〈Ψi| is a

statistical mixture of states and Pi is the probability to be in one of these states.

The time evolution for any system can be calculated from ih̄ d
dt
ρ = [H, ρ], and for our

three state atom, we add in decay rates which depend upon many different factors

including the detuning, coherence lifetime, and polarization decay. When all of these

equations are solved, it can be shown that the line shape of EIT is Lorentzian with

respect to the two photon detuning. The equation for the lineshape is given by:

f(∆) = γ
Aγ +B∆

γ2 + ∆2
+ C

where γ is the width of the resonance, ∆ is the two-photon detuning [12]. A,B,

and C are fit parameters that we only determine experimentally. The Lorentzian line-

shape exists in a narrow two-photon detuning frequency range and has relatively high

amplitude, and this is the characteristic EIT peak that we measure experimentally.
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2.3 Dependence on the Magnitude of an Applied Magnetic Field

In order to use EIT as an effective magnetometer, we need to know the functional

relationship between applied magnetic field and the output signal. As previously

mentioned, the applied magnetic field breaks the degeneracy in m quantum numbers

causing the well-known Zeeman Splitting. To find the strength of the applied magnetic

field, we need to quantify this energy splitting. Since we want our magnetometer to

be sensitive to minute fields, we must examine the regime where ~B is small compared

to the hyperfine splitting. This gives us an energy shift described by

HZeeman =
µB
h̄
gF ~F · ~B

where ~B is the applied magnetic field, ~µB = eh̄
2me

is the Bohr Magneton, gF is the

g-factor associated with ~F , the total spin operator of the atom (~S + ~I). When we

treat the applied magnetic field classically and orient it only along the quantization

axis , ẑ, we find

HZeeman =
µB
h̄
gFmFBZ .

The g-factor can be determined using the Wigner - Eckart Theorem that projects the

operators ~S and ~I onto the ~F operator. This projection can be used as a substitute

for the scalar products within the matrix elements. We find that

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)

where gJ and gI are the g-factors associated with ~J and ~I. The important feature

of this equation is that the splitting is linear with respect to the applied magnetic

field so long as the field is small. We can determine the magnetic field by measuring

the change in frequency two-photon detuning required to attain EIT. Because of
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Zeeman splitting, the two photon detuning required for resonance is offset by ∆0 =

µBgFmFBz, so the formula for the EIT lineshape becomes

f(∆) = γ
Aγ +B(∆−∆0)

γ2 + (∆−∆0)2
+ C.

By measuring the new resonance frequency, we can calculate the strength of the

applied magnetic field.

2.4 The Effect Due to an Applied Magnetic Field Direction

In order to determine the direction of the applied magnetic field, we use transition

selection rules. In our case, we use a linearly polarized beam to drive the transitions,

the reason for which will soon be evident. At this stage we are only interested in

which transitions exist for a given polarization. The strength of each transition for

a given polarization is more difficult to handle analytically, so these strengths will

be left to experimental justification. Wel look at two different cases to motivate the

method to determine the polarization of the magnetic field.

With a π-polarized driving electric field we know that the polarization of the field is

parallel to the applied field. We find for L = 0 that the Rabi Frequency is (neglecting

the small ~I term)

Ω =
µB

h̄2 gs〈F
′,m′F | − e~r · ~ELaser|F,mF 〉.

We then set the applied field to be along the quantization axis, ẑ, which gives:

Ω =
eµB

h̄2 gs| ~ELaser|〈F ′,m′F |z|F,mF 〉.

We find that transitions occur for ∆F = 0,±1 and ∆mF = 0. Using the solid

lines in Figure 3, we find that there are two possible Λ-systems allowed under these

conditions.
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The second case that we consider is when the driving field is perpendicular to

the applied magnetic field (σ - polarized driving field). We find for L = 0 (again

neglecting the ~I term that

Ω =
µB

h̄2 gs〈F
′,m′F |xEx + yEy|F,mF 〉.

This can be written using the ladder operators Sx = S++S−
2

and Sy = S+−S−
2i

as

Ω =
µB

h̄2 gs〈F
′,m′F |S+E− + S−E+|F,mF 〉.

The operators B− and B+ correspond to left and right circular polarized light. We find

that the allowed transitions are ∆mF = ±1 and ∆F = 0,±1. Using the Rubidium

dashed lines shown in Figure 3, we expect three transmission peaks to be observed in

this special case. Intermediate polarizations for the driving field between the above

two cases would allow each of the possible transitions. Unlike before, the amplitude

of the EIT peaks corresponding to the exact value of the matrix elements must be

determined to quantitatively find the polarization. In Rubidium, these intermediate

polarizations allow all seven possible Λ systems.

3 Experimental Design

In order to achieve a functional, all-optical magnetometer, the following experimental

design shown in Figure 6 is used.
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Figure 6: Experimental Design: A) Design for Retro-Reflection Experiment B) Design for Two-

Dimensional Measurement of the Magnetic Field Vector C) Coordinates, polarization angles, and

propagation vectors for each laser path when inside the Rubidium Cell where α = direction of the

applied magnetic field in the x− y plane, θ and φ are linear polarizations of the laser paths defined

as θ = γ(t) + ψ and φ = γ(t) + ψ. The polarization angle γ(t) is added from the output from the

Pockels Cell and the angle ψ is a linear polarization offset from a λ
2 waveplate.
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Figure 7: 1. VCSEL 2. Linear Polarizer 3. Laser Power Control 4.Pockels Cell 5. λ
2 waveplate 6.

AOM 7. Magnetic Shield with Rubidium Cell used for DAVLL

3.1 Vertical Cavity Surface Emitting Laser

Since EIT requires two laser fields coupled to a Λ - system, we might assume that we

would require two different lasers. Both of these fields must have the same phase and a

stable relative frequency, yet lasers drift in these characteristics. This drift makes two

independent lasers impractical. If we create two fields with a single laser, the relative

frequency and phase will remain the same between the two allowing experimental

realization of EIT. For our coherent light source we use a linearly polarized VCSEL.

This Vertical Cavity Surface Emitting Laser has a small size, low power consumption,

and a tunable frequency. The first two characteristics drastically reduce the space

and energy required for our magnetometer. The third allows us to scan the frequency

and observe each of the seven Λ - systems in Rubidium 87. The change in laser
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frequency is linear with applied current, and current sweeping is the easiest way to

modulate the frequency. Another way to tune the frequency of the VSCEL is through

temperature control. The relationship between temperature and frequency output is

also linear, but in our case we keep the temperature constant due to the difficulty of

rapid temperature change and the control required for frequency modulation.

When we modulate the current supplied to the laser, the laser beam contains not

only its original unmodulated frequency, but also many modulation sidebands which

are separated in Fourier space by the modulation frequency. As the single laser drifts

in phase and frequency, the difference in frequency between each frequency component

of the laser remains constant. From the theory section, we know the coupling field

must be of lower frequency and larger amplitude than the probe field to gain EIT. We

set the carrier frequency and the first sideband frequency of the modulated VSCEL

beam to the required values for the coupling and probe fields to create the conditions

required for EIT with a single laser. This means we set the carrier frequency to

the 5S 1
2
, F = 2 → 5P 1

2
, F
′

= 1 transition and the first sideband frequency to the

value required for the 5S 1
2
, F = 1 → 5P 1

2
, F
′

= 1 transition. We use a computer

program to scan the modulation frequency around a set value corresponding to an

expected resonance frequency. Due to the way the frequency components were locked,

the current modulation frequency is the same as the two photon detuning frequency.

When we sweep around the expected resonance frequencies in the presence of an

applied magnetic field we observe EIT peaks associated with one of the seven possible

Λ-systems. These peaks have the same Lorentzian shape as the line shape function

mentioned in the theory section.
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3.2 Dichroic Atomic Vapor Laser Lock

The laser’s overall frequency must be locked to the transitions of interest. In our

case, we want to set the frequency of the laser to the D1 transition line for Rubidium.

Since we need to modulate the laser to scan the two-photon detuning, we want a

laser lock that does not require any additional laser modulation. Many of the best

locking systems use dithering or intentional noise-adding to create an error signal [11].

The benefit of this method is that it creates steep error signals with zero crossings

at the desired transition frequency.The main drawback is due to the dithering, for

the addition of noise causes the addition of new frequency components in the laser

fields [12]. As discussed earlier, we need to control the frequency of modulation as

exactly as possible, so this random insertion of noise is undesirable. To get around

this problem, we use a laser lock that does not require frequency modulation – the

Dichroic Atomic Vapor Laser Lock (DAVLL).

Figure 8: DAVLL System

Figure 8 shows the main components of the laser lock system.We send a small
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fraction of the laser light from the VCSEL through a reference cell fitted with nat-

ural abundance of Rubidium vapor. This reference cell is placed inside a stack of

permantent magnets that produces a magnetic field parallel to the direction of laser

propagation. Then, the light passes through a quarter waveplate followed by a po-

larizing beam splitter (PBS). The two signals obtained on simple photodetectors are

subtracted from one another giving an error signal with a zero crossing at the fre-

quency of the D1 transition.

Linearly polarized light can be decomposed into right and left circularly polar-

ized beams as suggested in the Theory section. Due to the PBS, the photodetector

output of each arm is proportional to the intensity of either the right or the left cir-

cularly polarized light. If we send in the unlocked laser with a frequency around that

which is required for transitions F=1 to F’=1 without an applied magnetic field, the

mF = ±1 sublevels will be degenerate. This causes both circular polarizations to be

equally absorbed, resulting in zero difference between the two photodetector signals

for all frequencies. When a magnetic field is applied, these sublevels will no longer

be degenerate due to Zeeman Splitting. In this case, one of the circular polarized

components will only make transitions to the mF = 1 state, while the other will only

make transitions into the mF = −1 state. This means that the center of the absorp-

tion line for one polarization component will have a higher frequency than the other

[12]. When these two signals are subtracted, they create a dispersion-like error signal

with a zero crossing corresponding to the frequency of the desired transition. The

strength of the applied magnetic field changes the separation of the mF sublevels.

This, in turn, changes the frequency difference between the two polarization compo-
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nents of the light. Therefore, the frequency of the zero crossing, amplitude of the error

signal, and the slope changes as a function of the applied magnetic field [12]. The

temperature of the Rubidium cell also affects the strength of the error signal. The

higher the temperature, the greater the density of Rubidium atoms interacting with

the laser, and the more atoms interacting with the laser, the more precise the error

signal. The frequency of the lock can easily be altered by changing the location of the

zero crossing by rotating the quarter waveplate to cause an offset. By locking to the

transition shown in Figure 9, each of the frequency components of the laser (carrier

frequency and first sideband) is automatically locked to the specific transitions that

satisfy the requirements for EIT.

Figure 9: Locking Location on Oscilloscope
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Figure 10: Inside the Magnetic Shield

During an experiment, the majority of the light from our VCSEL is sent through

a series of polarizers and waveplates before passing through the experimental cell

filled with natural abundance Rubidium. This cell is positioned within a magnetic

shield and is maintained at a constant temperature using a heater. For all of these

experiments, the temperature was set at 80oC, giving the best EIT transmission

signal to noise. By raising the temperature of the cell, we increase the density of

Rubidium atoms within the cell, which increases the number of atoms interacting

with our laser. At 80oC, the density of Rubidium atoms is 1.2 × 1012 atoms per

cubic centimeter. The density of Rb87 atoms within the cell is 3.3 × 1011 atoms per

cubic centimeter. Two pairs of Helmholtz coils are positioned perpendicular to each

other within a magnetic shield, thus allowing us to apply a known magnetic field

with two direction components onto our Rubidium sample. The magnetic shield is
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formed by three layers of µ-metal that block the external magnetic fields. We also

eliminate residual magnetic domains inside the shield to ensure there is no detectable

background field. Figure 10 shows the arrangement of the Rubidium cell within the

magnetic shield and the two Helmholtz coils. This arrangement allows us to create

two vector components of a magnetic field whose magnitudes can be easily calculated

from the coil geometry, current, and the position of the Rubidium cell.

For a typical experiment, we set the desired two-photon detuning frequency sweep

and observe the Lorentzian EIT peaks on a homemade computer program. From

the amplitude of each peak, the direction of the magnetic field can be calculated,

and from the frequency separation between adjacent EIT peaks, the strength of the

magnetic field can be found.

Data acquisition is accomplished using simple photodetectors that are sensitive

to transmission through the Rubidium Cell. These signals are sent directly to our

computer for digital data readout or to a lock-in amplifier. An example of a typical

experimental run is shown in Figures 11 and 12.
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Figure 11: Characteristic EIT Transmission Peaks where the frequency is the two-photon detuning,

and the EIT signal is proportional to the voltage detected on the photodetectors. This EIT signal

is highest when on resonance and indicates the largest transmission through the sample atoms.

Figure 12: Characteristic EIT Lock In Amplifier Signal

The sharp peaks in Figure 11 are the EIT transmission peaks, and the point where
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they are maximum can be seen by the zero crossings in the lock-in signals. The

feature to notice about these two graphs is that there are seven EIT peaks, but four

of them are completely covered by noise in the transmission graph. However, in the

lock-in signal, we can not only see where these small peaks are, but we can also collect

useable data from them. Throughout this experiment we rely heavily upon the ability

of the lock-in amplifier to detect small signals.

4 Studies on Retro-Reflection Geometry for a Vector Mag-

netometer

In previous studies with our magnetometer, we have used a transparent target of

Rubidium atoms within a magnetic field [2, 3, 10, 13, 14]. This allowed us to measure

the EIT on the opposite side of our initial probe field. However, in many applications

the target is not transparent, or it cannot be positioned with a measurement device

behind it. To see if our magnetometer can handle these applications, we need to see

how EIT changes when it is measured on the same side as the incident laser fields.

The EIT measurements taken with the incident laser field on the opposite side of

the measurement devices will be called single pass, and, on the same side, double

pass. This beam is named double pass since the laser is retro-reflected which makes

it propagate almost exactly backwards. The laser passes twice through the Rubidium

atoms because of this reflection.

The single pass EIT characteristics have been measured in our lab’s previous work

[2, 3, 10, 13, 14], and have been seen to match the current theory, but the double pass

does not have a theoretical model to predict its behavior. To describe its character-
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istics we take data that correspond to the behavior seen in the single pass such as

the EIT shape, frequency, and amplitude. These are taken at different laser powers,

linear polarizations of the laser with respect to the magnetic field, and magnitudes of

the magnetic field. We want all of the characteristics of the double pass are the same

as the single pass so that our magnetometer can be used in a wide range of practical

applications without needing new theoretical models.

For this experiment, we need to reflect our probe laser directly back through

the Rubidium cell. Unfortunately, if the beam is reflected along the same path, it

interferes with the incident beam, thus distorting the transmission data significantly.

We observed that this has a drastic effect upon the shape and existence of transmission

peaks. For the two paths to avoid interference, their polarizations would need to be

90 degrees different, but this would change which peaks were visible in the retro-

reflected transmission data, as suggested from the selection rules. To get around this

problem, the light is reflected in a path that does not overlap with the original path.

Since this slight change in position causes a different magnetic field experienced by

atoms within the retro-reflected beam’s path, the two beams are aligned as closely as

possible to mitigate this issue. When the retro-reflected light passed entirely through

the cell, we use an edge mirror to divert its path towards a photodetector. By using

two photodectors for transmission data acquisition and a flip mirror for reflection, we

are able to switch back and forth between the normal measurement orientation and

the retro-reflected orientation. This allows us to make comparisons between the data

collected from the two paths.
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4.1 Central Peak EIT Frequency

In this experiment, we sweep our probe laser about the expected resonance frequency

and compared double pass with single. Any difference in EIT frequency is called a

peak shift. In the first peak shift experiment, we alter the linear polarization of our

probe laser field using the offset polarization angle ψ defined in Figure 6. Changing the

linear polarization of the laser at a constant magnetic field is equivalent to changing

the direction of the applied magnetic field at constant laser polarization, which can

be seen from the selection rules discussed in the Theory section. However, adjusting

the laser polarization is much easier, so it is the method we utilize. In the second

experiment, we modify laser power to see if it has an effect on peak shift. At each

linear polarization or power of the laser field we fit the transmission amplitude versus

frequency for both single and double pass. The linear polarization and power of the

laser was determined before the Rubidium cell. We assume that the power is about

20% less for the double pass and that the laser polarization will be unchanged. The

frequency of maximum amplitude is called the peak position, and the difference in

peak position is called the peak shift. The data collected for the peak shift when

changing laser polarization are shown in Figure 13 and when changing laser power

are shown in Figure 14.

In order to determine whether or not an experimental run was valid, we use three

different types of fits. If the peak position found was significantly different in one

of the fit equations, the experimental run is invalid. External noise from changes in

background light or fluctuations in laser power and frequency could cause invalidity.

Before any measurements were taken, we measured the change in polarization after
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the single pass and the drop in laser power after the single pass. This allows us to

find more accurate initial conditions for the double pass. The drop in laser power

when the field passed through the cell once was found to be 20.4%. To see if the

polarization changes significantly within the Rubidium cell we use two polarizers.

The first is placed prior to the magnetic shield and the second was placed after. The

polarizers are set perpendicular to each other , and we measured the EIT signal. Only

background signal is found, suggesting no significant change in polarization when the

laser light passes through the Rubidium cell. Both of these results allow us to compare

the peak positions as in Figures 13 and 14.

Figure 13: Differences in Peak Frequency Position Differences Due to Polarization (Squares = Gaus-

sian Fit, Diamonds = Lorentzian Fit, Crosses = Parabolic Fit, Solid Shapes = 1st run, Outline

Shapes = 2nd run
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Figure 14: Differences in Peak Frequency Position Differences Due to Laser Power (Same Fits as in

13)

Figures 13 and 14 show that the peak difference is small both when the laser

polarization is changed and when the laser power is altered. Even under identical

experimental conditions, the EIT signal can change shape or frequency, likely causing

the observed differences in peak shift. The y-axis scale for the two plots is different

due to the invalid point at 275 degrees in polarization, causing a very large peak

difference.

4.2 EIT Peak Characteristics

In this experiment we compare the shape of the central EIT peak of the double pass

to the single pass. As in the previous experiment, we collect transmission amplitude

data while sweeping laser frequency about resonance. Again, we gather data for both

passes at different laser powers. A Lorentzian fit as shown in Figure 15 was used,
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and we find no significant change in peak shape when comparing single and double

pass EIT peaks at any of the laser powers. Figure 16 shows the percent difference

of the EIT peak to the background transmission called contrast. These results are

interesting because at higher laser power, the contrast is higher for the double pass.

This suggests that the target atoms change atomic state or spatial position slowly

enough that the double pass effectively increases the number of interacting atoms,

which causes the observed stronger EIT signal. This feature can be used to increase

the accuracy of magnetic field measurements by increasing the number of passes

through the sample. Looking at the lower power range, we notice that the contrast is

less for the double pass. This is because the power dissipates before the double pass,

so there is not enough laser power to probe the resonance.

Figure 15: An Example of EIT transmission data fit with a Lorentzian Fit
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Figure 16: Contrast Comparison Between Single and Double Pass (Squares = Single Pass, Circles

= Double Pass)

4.3 EIT Peak Dependence on Polarization

Three different experiments are conducted to describe EIT dependence on laser polar-

ization. Last year, our lab found that there were universal maximums and minimums

in transmission when polarization angle θ was changed [10]. An example of these

results is shown in Figure 17. In this section, the polarization angle shown along the

x-axis is half of the probe laser polarization. So for Figures 17, 18, 19, 20, and 21,

the polarization of the laser is twice the angle shown along the x-axis. The values on

the x-axis correspond to the angle measured using a half waveplate.
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Figure 17: EIT Maximums and Minimums with Polarization [9], an designates a specific EIT peak

with a0 indicating the central peak

In the first of these experiments, we manually rotate a λ/2 waveplate immediately

prior to the magnetic shield and collected transmission amplitude as laser frequency

is swept about resonance. The contrast versus polarization data collected are shown

in Figure 18. We assume that the polarization with the maximum contrast is the

polarization of maximum EIT signal. We fit the data with Gaussian fits, and found

the peak position for the single pass to be 266 ± 1 degrees, and for double pass

269 ± 1.5 degrees. We see that the maximum position for the double pass is not

significantly different from the maximum polarization of the single pass. We attribute

the small variation to the inaccuracy of the measurement process since even duplicate

polarizations give different results for the contrast due to fluctuations in the laser

intensity, the laser frequency, or the room light.
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Figure 18: a) EIT signal vs Polarization Using Manual Polarization Change (Squares = Single Pass,

Circles = Double Pass) b) EIT Signal vs Polarization Using Polarization Modulation and the Lock

in Amplifier

The second and third experiments use a voltage regulated waveplate called a Pock-

els cell. We calibrate the Pockels cell for a high voltage source, and a linear fit of

the calibration curve (shown in Figure 19) makes the determination of the accepted

polarization angle (γ) of the trivial. Another benefit of using a Pockels cell is that

we can easily sweep the polarization using an input sine wave. In order to get the

full spectrum of possible polarization, we manually set a starting angle ψ for the

polarization sweep using a half waveplate after the Pockels cell.
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Figure 19: λ
2 Angle Output Versus Input Voltage for the Pockels Cell

The first method using the Pockels cell sweep sends the modulated polarization

signal to the lock-in amplifier, generating a smooth function of polarization. This

smooth relationship allows us to find the polarization of maximum and minimum EIT

signal. Unfortunately, using polarization modulation, our lock-in amplifier signal is

proportional to the entire transmission signal, and not merely the EIT signal. The

problem with this is that the background transmission also shifts with polarization,

and it is much larger than the EIT signal. The majority of the lock-in signal, therefore,

is due to the background. In order to mitigate this problem, we take two lock-in

measurements for a single zero point in polarization, one at a frequency where we

expect to be on resonance, and another where we do not. Since the background

transmission does not depend on the frequency, we subtract the two lock in signals

to get the desired EIT signal. We find that there are discontinuous jumps in EIT

signal when a different zero point polarization is used, unlike the expected smooth

EIT signal versus polarization. So the EIT signal is too small in comparison to the
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background noise for our subtraction method to produce meaningful results. The

second method for using the Pockels cell exploits the frequency dependence on EIT

in a different way. In this procedure, we initially modulate the frequency about the

desired EIT signal. The background transmission is not sensitive to this modulation,

so the lock in signal appears similar to a derivative of the transmission signal with the

background tending to zero. Then we can sweep the polarization using the Pockels

cell to get only the EIT shift with polarization and not the background transmission’s

shift. Figures 20 and 21 show the lock in EIT signal for both the single and double pass

using the frequency modulated method. Now we see the expected smooth curve of

EIT signal versus polarization unlike with the subtraction method, and we notice that

there are polarization positions of maximum and minimum in EIT signal. We want

the maximum and minimum positions to be the same for each pass for applications

with oblique targets to be practical without major design modifications. Incidentally,

we do find that the maximum and minimum are the same for the single and double

pass as seen from Figures 20 and 21.
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Figure 20: EIT Signal vs Polarization Using Frequency Modulation for Single Pass

Figure 21: EIT Signal vs Polarization Using Frequency Modulation for Double Pass
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5 Two-dimensional Measurement of the Magnetic Field Vec-

tor

In our previous experiments, we have only made measurements along a single axis.

We can predict the geometric relationship of the laser beam and the magnetic field

direction using transition selection rules, but first we construct the coordinate system

shown in Figure 22.

In this system, our laser beam propagates in the positive y direction. The angle θ

represents the linear polarization of the laser beam, and the magnetic field vector can

point in any direction in R3. By comparing the polarization of the laser field (θ) and

the direction of the magnetic field, we can find a plane that contains both ~k and ~B.

An example of a plane containing ~k and ~B is Figure 23. The normal vector to this

surface, ~n, is also pictured for reference. We use these normal vectors to accurately

determine the direction of the magnetic field, which we discuss later.

Figure 22: Coordinate System
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Figure 23: Example plane containing ~k and ~B

To resolve the magnetic field down to a single line, we use a property about two

non-parallel planes. The intersection between such planes is a line, and with the

correct orientation, we can make this line contain the magnetic field vector.

No matter the direction of propagation of a probe laser, we can find a plane

containing both ~k and ~B. When adding a second measurement direction, we ensure

that the new plane is not parallel to the plane created from the first measurement.

This causes the constraint that the new propagation, ~k2, must have the property

~k2 · ~k1 6= 0. In other words, ~k2 cannot be parallel or antiparallel. In our experiment,

we choose to make ~k2 ⊥ ~k1 for two reasons. The first is that our magnetic shield

can accommodate this measurement orientation fairly easily, and the second is that

this orientation allows us to assign a natural right handed coordinate system shown

in Figure 22. Since ~k1 propagates along the y-axis, the new propagation vector, ~k2 is

along the z-axis. The polarization of this new laser beam is also linear, and we use

the coordinate φ to represent it.

We can now motivate the method for measuring the direction of the magnetic

field. We know that the cross product between ~k and ~B gives a vector normal to the

plane. When the laser polarization is perpendicular to ~B it is parallel to the normal
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vector. We construct unit vectors along the direction of the polarization ~n1 and ~n2

that are parallel to the vector normal to one of the planes. We know the intersection

line between both planes is also inside both planes. This means that it must be

perpendicular to the normal vectors of both planes, so it is also be perpendicular to

~n1 and ~n2. Therefore, the intersection line is parallel to ~n1 × ~n2. Once we calculate

this cross product, we know the direction of the magnetic field.

Thus, we modified the apparatus to accommodate this new measurement direction.

In order to successfully accomplish this, the two beams must intersect within the

Rubidium cell at a 90 degree angle. Since our cell looks like a flat cylinder, the cell

must be positioned with a 45 degree angle within the shield (Figure 10 shows the

new orientation). To assist with alignment, a paper mask is placed on the face of

the Rubidium cell greatly restricting the path of each beam. Due to the design of

the magnetic shield, the new beam path propagates vertically. We still wish to use a

single laser to supply the fields necessary for EIT, so we need a method to split the

beam in two separate paths without reducing the power in each channel (Figure 16).

To accomplish this task, we use an Acousto-optic modulator (AOM) which diffracts

incident beams depending upon the wavelength of a supplied audio field.
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Figure 24: Modification used to measure two vector components of a magnetic field

By supplying the AOM with a sinusoidal input voltage, we can flip between one

path and the other with the maximum available intensity. Due to the long lived atomic

states of Rubidium, we found that the atomic states are approximately constant if the

frequency sent into the AOM is higher than 20kHz. This allows the device to measure

both directions of the magnetic field utilizing the maximum possible intensity through

both paths at effectively the same time.

5.1 Measurement of the Magnetic Vector Direction

In this experiment, we measure the EIT transmission peak height as a function of

laser polarization using the two perpendicular probe directions. For these preliminary

measurements, we manually change the polarization of the laser fields using a half

waveplate. We use the selection rules for transition probability to determine the

direction of the magnetic fields. We use the fact that the laser field is parallel when

the a−2 and a2 are maximum while the other peaks are zero, and the laser field is

perpendicular when the a−2, a0, and a2 peaks are maximum and the other peaks are
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zero.

In each of the experiments, we use a large step size in laser polarization. This causes

a significant source of error in the measured direction of the magnetic field, because

we do not find the exact polarization of maximum or minimum EIT amplitude.

In the first experiment, we set the magnetic field along the x-axis. The EIT peak

height versus laser polarization results for the horizontal measurement beam (along

the z-axis) are shown in Figure 25. Results for the vertical measurement beam (along

the z-axis) on the same magnetic field are shown in Figure 26.

Figure 25: Horizontal Magnetic Field Measurement with a Perpendicular Field

We find from Figure 25 that the laser field is perpendicular to the magnetic field

when the polarization is −4 degrees, and it is parallel when the polarization is 88

degrees. We expect to have 0 degrees and 90 degrees, so this rough measurement

agrees. From this we know that the normal vector ~n1 is along the z-axis.
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Figure 26: Vertical Magnetic Field Measurement with a Perpendicular Field

We find from the above figure that the laser field is perpendicular when the polar-

ization is 90 degrees, and it is parallel when the polarization is 180 degrees. Therefore,

the normal vector to this plane, ~n2 is along the y-axis. Taking the cross product of

~n1 and ~n2 we find that the magnetic field vector lies along the x-axis, as we expect.

In the second experiment, we set the magnetic field along the y-axis. We ensure

that the magnitude of the field is the same as the magnitude in the first experiment.

We again start with measuring along the y-axis, and the EIT peak height versus laser

polarization is shown below.
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Figure 27: Horizontal Magnetic Field Measurement with a Parallel Field

From Figure 27, we find that the EIT peak height does not have a significant

dependence on the polarization of the laser fields. This is because, the a−2, a0, a2

peaks remain high throughout the 180 degree span in polarization. Also, the other

EIT peak amplitudes remain essentially zero as the polarization changes. From this,

we can determine that the magnetic field is approximately parallel to the measurement

beam propagation vector. In Figure 28, we measure the same applied magnetic field

along the z- axis. In this case, we expect to see a similar dependence of EIT peak

height on laser polarization as in Figure 26 because the magnetic field direction is

again perpendicular to the propagation direction.
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Figure 28: Vertical Magnetic Field Measurement with a Parallel Field

The above figure shows that the magnetic field is perpendicular when the polar-

ization of the laser field is approximately 180 degrees, and it is parallel at about 90

degrees. In this experiment, we have a special case where ~k1 is parallel to the mag-

netic field. When this occurs, we automatically know the direction of the magnetic

field due to the shape of Figure 27; however, Figure 28 is a useful check that confirms

the magnetic field lies along the y-axis.

We now start a new experiment with an applied magnetic field magnetic field

oriented at a 45 degree angle from the y-axis but still in the x-y plane. The total span

of the polarization was decreased because we need to know a either a perpendicular

polarization or a parallel polarization to find the normal vectors.
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Figure 29: Horizontal Magnetic Field Measurement with a Field Direction at 45 degrees

From Figure 29, we can conclude that the laser field is perpendicular to the mag-

netic field at approximately 0 degrees. This gives us that the normal vector, ~n1, is

along the z-axis.

Figure 30: Vertical Magnetic Field Measurement with a Field Direction at 45 degrees

We find from Figure 30 that the laser field is parallel when the laser polarization

is around 45 degrees. Thus, we know the polarization is perpendicular when the
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polarization is 135 degrees. So, ~n2 lies in the x-y plane with an angle of 135 degrees.

We now take the cross product between ~n1 and ~n2 which gives us a vector that lies

in the x-y plane with an angle of 225 degrees. We conclude that the magnetic field

points at a 45 degree angle and lies in the x-y plane. This matches the expected

direction of the magnetic field.

For each of these examples we have been able to roughly determine the direction of

an applied magnetic field. This shows that our magnetometer is capable of creating

a full vector map of the magnetic field by using two perpendicular measurement

directions.

6 Future Experiments

The next step in the development of a fully functional EIT vector magnetometer is

to more accurately find the two dimensional vector components of the magnetic field.

This will be completed using a similar lock-in polarization sweeping method used to

find the maximum and minimum peak heights in the retro-reflection experiment. We

will sweep around the EIT maximum for the a0 peak for both of the measurement

orientations. This will provide us with the exact polarization of maximum EIT am-

plitude which corresponds to the precise direction of the normal vector to the plane

containing ~k and ~B.

Next, we will replace each photodetector by a digital camera. By doing this, we

will be able to collect EIT maxima and minima on each of the pixels, allowing for an

incredibly accurate three dimensional map of the magnetic field.

Another potential step in the our magnetometer developement might be the com-
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plete implementation of retro-reflection geometetry to create a compact magnetic field

sensitive probe. We would then be able to measure unknown magnetic fields outside

of our magnetic shield. This would require the creation of a custom made cell con-

taining Rubidium 87 vapor allowing for two perpendicular beams to be retro-reflected

prior to measurement. By using fiber optics cables for both measurement directions,

we could easily move the cell and collect data for many points in space.

7 Conclusion

In these experiments, we have found that a magnetometer based upon EIT can accu-

rately measure the vector components of an applied magnetic field by measuring in

two directions. These results suggest that our apparatus is capable of fully mapping

an applied magnetic field. Once our prototype is modified for practical use with un-

known magnetic fields, the EIT magnetometer will be a strong competitor with other

high sensitive vector magnetometers. The main reason for this is that most of the

other highly sensitive magnetometers cannot create complete vector maps.

We also have found through the retro-reflection experiments that our magnetome-

ter can handle applications when the experimenter cannot place a photodetector

behind the target whose magnetic field they wish to measure. The reason for this

limitation could be the size of the target or the opaqueness of the target. These ex-

periments also verify that a new theoretical model is unnecessary for retro-reflected

light since all of the characteristics for non-reflected EIT peaks match those found

for retro-reflected EIT peaks. The results we have gained create a strong foundation

for the practical ability of a vector magnetometer based upon electromagnetically

50



induced transparency.
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